Base excision repair-mediated resistance to cisplatin in KRAS(G12C) mutant NSCLC cells

نویسندگان

  • Elisa Caiola
  • Daniela Salles
  • Roberta Frapolli
  • Monica Lupi
  • Giuseppe Rotella
  • Anna Ronchi
  • Marina Chiara Garassino
  • Nikola Mattschas
  • Stefano Colavecchio
  • Massimo Broggini
  • Lisa Wiesmüller
  • Mirko Marabese
چکیده

KRAS mutations in NSCLC are supposed to indicate a poor prognosis and poor response to anticancer treatments but this feature lacks a mechanistic basis so far. In tumors, KRAS was found to be mutated mostly at codons 12 and 13 and a pool of mutations differing in the base alteration and the amino acid substitution have been described. The different KRAS mutations may differently impact on cancerogenesis and drug sensitivity. On this basis, we hypothesized that a different KRAS mutational status in NSCLC patients determines a different profile in the tumor response to treatments. In this paper, isogenic NSCLC cell clones expressing mutated forms of KRAS were used to determine the response to cisplatin, the main drug used in the clinic against NSCLC. Cells expressing the KRAS(G12C) mutation were found to be less sensitive to treatment both in vitro and in vivo. Systematic analysis of drug uptake, DNA adduct formation and DNA damage responses implicated in cisplatin adducts removal revealed that the KRAS(G12C) mutation might be particular because it stimulates Base Excision Repair to rapidly remove platinum from DNA even before the formation of cross-links. The presented results suggest a different pattern of sensitivity/resistance to cisplatin depending on the KRAS mutational status and these data might provide proof of principle for further investigations on the role of the KRAS status as a predictor of NSCLC response.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Different metabolic responses to PI3K inhibition in NSCLC cells harboring wild-type and G12C mutant KRAS

KRAS mutations in non-small-cell lung cancer (NSCLC) patients are considered a negative predictive factor and indicate poor response to anticancer treatments. KRAS mutations lead to activation of the PI3K/akt/mTOR pathway, whose inhibition remains a challenging clinical target. Since the PI3K/akt/mTOR pathway and KRAS oncogene mutations all have roles in cancer cell metabolism, we investigated ...

متن کامل

Molecular and Cellular Pathobiology Oncogenic KRAS Confers Chemoresistance by Upregulating NRF2

Oncogenic KRAS mutations found in 20% to 30% of all non–small cell lung cancers (NSCLC) are associated with chemoresistance and poor prognosis. Here we demonstrate that activation of the cell protective stress response gene NRF2 by KRAS is responsible for its ability to promote drug resistance. RNAi-mediated silencing of NRF2 was sufficient to reverse resistance to cisplatin elicited by ectopic...

متن کامل

MiR-488 inhibits proliferation and cisplatin sensibility in non-small-cell lung cancer (NSCLC) cells by activating the eIF3a-mediated NER signaling pathway

Our previous studied indicated that eukaryotic translation initiation factor 3a (eIF3a) increases the sensitive of platinum-based chemotherapy in lung cancer. MiRNAs play an important role in lung carcinogenesis and drug response. In this study, we aimed to identify potential endogenous miRNAs that inhibit eIF3a expression and determine their influence of this inhibition on cisplatin resistance...

متن کامل

Comparative metabolomics profiling of isogenic KRAS wild type and mutant NSCLC cells in vitro and in vivo

Oncogenes induce metabolic reprogramming on cancer cells. Recently, G12C KRAS mutation in isogenic NSCLC cell line has been shown to be a key player in promoting metabolic rewiring mainly through the regulation of glutamine metabolism to fuel growth and proliferation. Even though cell lines possessing many of the genetic backgrounds of the primary cancer they derive from could be a valuable pre...

متن کامل

Synergistic Effect of Subtoxic-dose Cisplatin and TRAIL to Mediate Apoptosis by Down-regulating Decoy Receptor 2 and Up-regulating Caspase-8, Caspase-9 and Bax Expression on NCI-H460 and A549 Cells

Objective(s): Although tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) can selectively induce apoptosis in tumor cells, more than half of tumors including non-small cell lung cancer (NSCLC) exhibit TRAIL-resistance. The purpose of this study was to determine whether subtoxic-dose cisplatin and TRAIL could synergistically enhance apoptosis on NSCLC cells and investigate its under...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2015